134 research outputs found

    Local Clustering in Contextual Multi-Armed Bandits

    Full text link
    We study identifying user clusters in contextual multi-armed bandits (MAB). Contextual MAB is an effective tool for many real applications, such as content recommendation and online advertisement. In practice, user dependency plays an essential role in the user's actions, and thus the rewards. Clustering similar users can improve the quality of reward estimation, which in turn leads to more effective content recommendation and targeted advertising. Different from traditional clustering settings, we cluster users based on the unknown bandit parameters, which will be estimated incrementally. In particular, we define the problem of cluster detection in contextual MAB, and propose a bandit algorithm, LOCB, embedded with local clustering procedure. And, we provide theoretical analysis about LOCB in terms of the correctness and efficiency of clustering and its regret bound. Finally, we evaluate the proposed algorithm from various aspects, which outperforms state-of-the-art baselines.Comment: 12 page

    DPPIN: A Biological Dataset of Dynamic Protein-Protein Interaction Networks

    Full text link
    Nowadays, many network representation learning algorithms and downstream network mining tasks have already paid attention to dynamic networks or temporal networks, which are more suitable for real-world complex scenarios by modeling evolving patterns and temporal dependencies between node interactions. Moreover, representing and mining temporal networks have a wide range of applications, such as fraud detection, social network analysis, and drug discovery. To contribute to the network representation learning and network mining research community, in this paper, we generate a new biological dataset of dynamic protein-protein interaction networks (i.e., DPPIN), which consists of twelve dynamic protein-level interaction networks of yeast cells at different scales. We first introduce the generation process of DPPIN. To demonstrate the value of our published dataset DPPIN, we then list the potential applications that would be benefited. Furthermore, we design dynamic local clustering, dynamic spectral clustering, dynamic subgraph matching, dynamic node classification, and dynamic graph classification experiments, where DPPIN indicates future research opportunities for some tasks by presenting challenges on state-of-the-art baseline algorithms. Finally, we identify future directions for improving this dataset utility and welcome inputs from the community. All resources of this work are deployed and publicly available at https://github.com/DongqiFu/DPPIN

    Robust Basket Recommendation via Noise-tolerated Graph Contrastive Learning

    Full text link
    The growth of e-commerce has seen a surge in popularity of platforms like Amazon, eBay, and Taobao. This has given rise to a unique shopping behavior involving baskets - sets of items purchased together. As a less studied interaction mode in the community, the question of how should shopping basket complement personalized recommendation systems remains under-explored. While previous attempts focused on jointly modeling user purchases and baskets, the distinct semantic nature of these elements can introduce noise when directly integrated. This noise negatively impacts the model's performance, further exacerbated by significant noise (e.g., a user is misled to click an item or recognizes it as uninteresting after consuming it) within both user and basket behaviors. In order to cope with the above difficulties, we propose a novel Basket recommendation framework via Noise-tolerated Contrastive Learning, named BNCL, to handle the noise existing in the cross-behavior integration and within-behavior modeling. First, we represent the basket-item interactions as the hypergraph to model the complex basket behavior, where all items appearing in the same basket are treated as a single hyperedge. Second, cross-behavior contrastive learning is designed to suppress the noise during the fusion of diverse behaviors. Next, to further inhibit the within-behavior noise of the user and basket interactions, we propose to exploit invariant properties of the recommenders w.r.t augmentations through within-behavior contrastive learning. A novel consistency-aware augmentation approach is further designed to better identify noisy interactions with the consideration of the above two types of interactions. Our framework BNCL offers a generic training paradigm that is applicable to different backbones. Extensive experiments on three shopping transaction datasets verify the effectiveness of our proposed method.Comment: CIKM 202

    Graph Neural Bandits

    Full text link
    Contextual bandits algorithms aim to choose the optimal arm with the highest reward out of a set of candidates based on the contextual information. Various bandit algorithms have been applied to real-world applications due to their ability of tackling the exploitation-exploration dilemma. Motivated by online recommendation scenarios, in this paper, we propose a framework named Graph Neural Bandits (GNB) to leverage the collaborative nature among users empowered by graph neural networks (GNNs). Instead of estimating rigid user clusters as in existing works, we model the "fine-grained" collaborative effects through estimated user graphs in terms of exploitation and exploration respectively. Then, to refine the recommendation strategy, we utilize separate GNN-based models on estimated user graphs for exploitation and adaptive exploration. Theoretical analysis and experimental results on multiple real data sets in comparison with state-of-the-art baselines are provided to demonstrate the effectiveness of our proposed framework.Comment: Accepted to SIGKDD 202
    • …
    corecore